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Abstract
We investigate the electromagnetic field generated by a point charge moving
along a helical trajectory inside a circular waveguide with conducting walls
filled by homogeneous dielectric. The parts corresponding to the radiation
field are separated, and the formulae for the radiation intensity are derived for
both TE and TM waves. It is shown that the main part of the radiated quanta is
emitted in the form of the TE waves. Various limiting cases are considered. The
results of the numerical calculations show that the insertion of the waveguide
provides an additional mechanism for tuning the characteristics of the emitted
radiation by choosing the parameters of the waveguide and filling medium.

PACS numbers: 41.60.Ap, 41.60.Bq

1. Introduction

A charged particle confined to the helical orbit is a source of high intensity electromagnetic
radiation over a broad range of wavelengths with a number of remarkable properties such as
high collimation and high degree of polarization (see, for instance [1–3]). These properties
have resulted in extensive applications of this radiation in a wide variety of experiments and
in many disciplines. In particular, the helical motion of an electron beam is employed in
helical undulators to produce circularly polarized radiation in a narrow angular cone in the
forward direction [5–8]. In the proposal of [4], the helical undulator radiation was used to
generate a polarized positron beam. Synchrotron radiation from relativistic electrons spiralling
in magnetic fields is the main mechanism to explain the emissions of many objects in radio
astronomy (see [9] and references therein). Most of the works on the radiation from the helical
trajectory refer to radiation in free space. It is well known that the presence of a medium can
essentially change the characteristics of the electromagnetic processes and gives rise to new
types of phenomena such as the Cherenkov, transition, and diffraction radiations. In particular,

1751-8113/07/3410641+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK 10641

http://dx.doi.org/10.1088/1751-8113/40/34/018
mailto:saharian@ictp.it
http://stacks.iop.org/JPhysA/40/10641


10642 A S Kotanjyan and A A Saharian

the operation of a number of devices assigned to the production of electromagnetic radiation
is based on the interaction of charged particles with materials (see, for example, [10]).

The synchrotron radiation from a charged particle circulating in a homogeneous medium
was considered in [11]. In this paper, it was shown that the interference between the
synchrotron and Cherenkov radiations leads to interesting effects. New interesting features
arise in inhomogeneous media. In particular, the interfaces of media can be used to control
the radiation flow emitted by various systems. In a series of papers started in [12, 13], we have
considered the simplest geometries of boundaries between two dielectrics with spherical and
cylindrical symmetries. The synchrotron radiation from a charge rotating around a dielectric
ball enclosed by a homogeneous medium is investigated in [13, 14]. It was shown that, if for
the material of the ball and the particle velocity, the Cherenkov condition is satisfied, strong
narrow peaks appear in the radiation intensity. At these peaks the radiated energy exceeds the
corresponding quantity in a homogeneous medium by several orders of magnitude. A similar
problem with the cylindrical symmetry has been discussed in [12, 15–17]. In [12], we have
developed a recurrent scheme for constructing the Green function of the electromagnetic field
for a medium consisting of an arbitrary number of coaxial cylindrical layers. The investigation
of the radiation from a charged particle circulating around a dielectric cylinder immersed in
a homogeneous medium has shown that under the Cherenkov condition for the material of
the cylinder and the velocity of the particle there are narrow peaks in the angular distribution
of the number of quanta emitted into the exterior space. For some values of the parameters
the density of the number of quanta in these peaks exceeds the corresponding quantity for
the radiation in vacuum by several orders. The radiation by a longitudinal charged oscillator
moving with a constant drift velocity along the axis of a dielectric cylinder immersed in a
homogeneous medium is investigated in [18, 19]. As in the case of the circular motion, it was
shown that the presence of the cylinder provides a possibility for an essential enhancement of
the radiation intensity. The properties of the radiation from a charged particle moving along a
helical orbit in homogeneous dispersive medium are investigated in [20]. The corresponding
problem for the charge moving in vacuum has been widely discussed in literature (see, e.g.,
[1–3, 21] and references therein). The electromagnetic field and the radiation in the case of
particle following the helical path inside a dielectric cylinder immersed into a homogeneous
medium are studied in [22, 23]. Recently, the influence of a homogeneous transparent medium
on the radiation of relativistic particles in planar undulators is considered in [24].

In the present paper, we study the electromagnetic field and the radiation intensity for a
charge moving in a helical orbit inside a circular waveguide with dielectric filling. Note that
the radiation parts of the fields in the case of vacuum inside the waveguide are investigated
in [25]. The plan of the paper is as follows. In section 2 we derive expressions for the
electric and magnetic fields by making use of the corresponding formulae from [23] for the
geometry of a dielectric cylinder immersed into a homogeneous medium. Analytic properties
of the corresponding Fourier components are investigated. In section 3 the radiation fields
are separated and they are presented as a superposition of the waveguide eigenmodes. The
formulae are derived for the radiation intensity of TE and TM waves, and numerical examples
are presented. Section 4 concludes the main results of the paper.

2. Electromagnetic fields inside a waveguide

Consider a point charge q moving along the helical trajectory of radius ρ0 inside a circular
waveguide with conducting walls. We will denote by ρ1 the radius of the waveguide and
will assume that it is filled by homogeneous dielectric with permittivity ε0. We denote the
particle velocities along the axis of the waveguide (drift velocity) and in the perpendicular
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plane by v‖ and v⊥, respectively. In a properly chosen cylindrical coordinate system (ρ, φ, z)

the corresponding motion is described by the coordinates

ρ = ρ0, φ = ω0t, z = v‖t, (1)

where the z-axis coincides with the waveguide axis and ω0 = v⊥/ρ0 is the angular velocity of
the charge. This type of motion can be produced by a uniform constant magnetic field directed
along the axis of a cylinder, by a circularly polarized plane wave, or by a spatially periodic
transverse magnetic field of constant absolute value and a direction that rotates as a function
of the coordinate z. In the helical undulators the last geometry is used.

In accordance with the symmetry of the problem, we present the electric and magnetic
fields in the form of the Fourier expansion

Fl(r, t) =
∞∑

m=−∞
eim(φ−ω0t)

∫ ∞

−∞
dkz eikz(z−v‖t)Fml(kz, ρ)

= 2Re
∞∑

m=0

′
eim(φ−ω0t)

∫ ∞

−∞
dkz eikz(z−v‖t)Fml(kz, ρ), (2)

where l = ρ, φ, z, and in the discussion below F = E,H for the electric and magnetic
fields, respectively. The expressions for the Fourier transforms Fml(kz, ρ) are obtained from
the corresponding formulae derived in [23] for the geometry of a dielectric cylinder with
permittivity ε0 immersed into a medium with permittivity ε1, taking the limit ε1 → ∞. As a
result of this limiting procedure, the Fourier transforms are written in the decomposed form

Fml(kz, ρ) = F
(0)
ml (kz, ρ) + F

(1)
ml (kz, ρ), (3)

where the part F
(0)
ml (kz, ρ) corresponds to the fields generated by the charge in a homogeneous

medium with permittivity ε0 and the part F
(1)
ml (kz, ρ) is induced by the presence of the

waveguide. In the case ρ < ρ0 for the homogeneous part of the magnetic field one has

H
(0)
ml = − qkz

2π iσl

∑
p=±1

pσl−1D(0p)
m Jm+p(λ0ρ), l = ρ, φ, (4)

H(0)
mz = −qλ0

2π

∑
p=±1

pD(0p)
m Jm(λ0ρ), (5)

with the coefficients

D(0p)
m = π

2ic

[
v⊥Hm+p(λ0ρ0) − v‖

λ0

kz

Hm(λ0ρ0)

]
. (6)

In these expressions σρ = 1, σφ = 2, Jm(x) is the Bessel function, Hm(x) = H(1)
m (x) is the

Hankel function of the first kind, and

λ2
0 = ω2

m(kz)

c2
ε0 − k2

z , ωm(kz) = mω0 + kzv‖. (7)

The corresponding expressions for ρ < ρ0 are obtained from (4) and (5) by the replacements
J � H . The part H

(1)
ml (kz, ρ) induced by the presence of the waveguide is given by the

formulae

H
(1)
ml = − qkz

2π iσl

∑
p=±1

pσl−1D(p)
m Jm+p(λ0ρ), l = ρ, φ, (8)

H(1)
mz = −qλ0

2π

∑
p=±1

pD(p)
m Jm(λ0ρ), (9)
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where we have introduced the notation

D(p)
m = π

2ic

[
v‖

λ0

kz

Hm(λ0ρ1)

Jm(λ0ρ1)
Jm(λ0ρ0) − v⊥Jm+p(λ0ρ0)

Hm+p(λ0ρ1)

Jm+p(λ0ρ1)

− iv⊥p

πρ1λ0

Jm−p(λ0ρ1)

Jm(λ0ρ1)J ′
m(λ0ρ1)

∑
l=±1

l
Jm+l (λ0ρ0)

Jm+l (λ0ρ1)

]
, (10)

and the prime stands for the derivative with respect to the argument of the function.
The part in the electric field due to the presence of the waveguide is given by the formulae

E
(1)
ml = qc i1−σl

4πωm(kz)ε0

∑
p=±1

pσlJm+p(λ0ρ)

[(
ω2

m(kz)ε0

c2
+ k2

z

)
D(p)

m − λ2
0D

(−p)
m

]
, (11)

E(1)
mz = q icλ0kz

2πωm(kz)ε0

∑
p=±1

D(p)
m Jm(λ0ρ), (12)

where l = ρ, φ. The corresponding formulae for the part E
(0)
ml are obtained from (11) and (12)

by the replacement D
(p)
m → D

(0p)
m . Note that in the limit ρ0 → ρ1 one has D

(p)
m → −D

(0p)
m

and the fields vanish. We could expect this result, as when the charge is on the surface of the
waveguide the charge and its image compensate each other.

The formulae given above describe the total electromagnetic field inside the waveguide.
To separate the parts corresponding to the radiation we need the analytic properties of the
Fourier components as functions on kz. From formula (10) it follows that the function D

(p)
m

has singular points corresponding to the zeros of the function Jm(λ0ρ1) and its derivative. Note
that in the second and third summands on the right-hand side of formula (10) the singularities
at the zeros of the functions Jm±1(λ0ρ1) cancel out, and the function D

(p)
m is analytic at these

points. We denote by j (σ)
m,n , n = 1, 2, . . . , the nth positive zero of the Bessel function (σ = 0)

and its derivative (σ = 1):

J (σ)
m (λ0ρ1) = J (σ)

m

(
j (σ)
m,n

) = 0, (13)

where J (σ)
m (x) = dσJm(x)/dxσ . These zeros describe the eigenmodes for the cylindrical

waveguide and are known as TM modes for the case σ = 0 and as TE modes for the case
σ = 1 [26]. The corresponding modes for the projection of the wave vector on the cylinder
axis are determined from the relation λ0ρ1 = j (σ)

m,n by taking into account expressions (7):

(
β2

‖ − 1
)
k2
z + 2m

ω0

c

√
ε0β‖kz +

(
m2 ω2

0ε0

c2
− j (σ)2

m,n

ρ2
1

)
= 0, β‖ = v‖

c

√
ε0. (14)

This equation has real solutions under the condition

b(σ)2
m,n

(
1 − β2

‖
)

� 1, b(σ)
m,n ≡ cj (σ)

m,n

mω0ρ1
√

ε0
, (15)

and these solutions have the form

kz = k(σ,±)
m,n = mω0

√
ε0

c
(
1 − β2

‖
) [

β‖ ±
√

1 + b
(σ)2
m,n

(
β2

‖ − 1
)]

. (16)

The values k(σ,±)
m,n correspond to the simple poles of the functions Eml(kz, ρ) and Hml(kz, ρ).

Note that if the Cherenkov condition for the velocity of the particle along the axis of the
waveguide is satisfied, β‖ > 1, then inequality (15) is valid for all values n = 1, 2, . . . .
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Figure 1. Integration contour in the kz plane for the case β‖ < 1.

In the case β‖ < 1, condition (15) determines the maximal value for n, which we will denote
by n(σ)

max:

j
(σ)

m,n
(σ)
max

<
mω0ρ1

√
ε0

c

√
1 − β2

‖
< j

(σ)

m,n
(σ)
max+1

. (17)

The value of the function ωm(kz) at the points k(σ,±)
m,n is equal to

ω(σ,±)
m,n = mω0

1 − β2
‖

[
1 ± β‖

√
1 + b

(σ)2
m,n

(
β2

‖ − 1
)]

. (18)

For m = 0, equation (14) has real solutions only when β‖ > 1 and

kz = k
(σ,±)
0,n = ∓ j

(σ)
0,n

ρ1

√
β2

‖ − 1
, ω

(σ,±)
0,n = v‖k

(σ,±)
0,n . (19)

For real values ε0 and under the condition (15) the poles are situated on the real axis of the
complex plane kz. In formula (2) it is necessary to give the way by which these poles should
be circled. For this we note that in physical situations the dielectric permittivity is a complex
quantity, ε0 = ε′

0 + iε′′
0 , and the imaginary part ε′′

0 determines the absorbtion in the medium.
Under the condition |ε′′

0 | 	 ε′
0, for the imaginary part of k(σ,±)

m,n from (16) one has

Im k(σ,±)
m,n = ±C1ε

′′
0(ωm), C1 > 0, (20)

where ε′′
0(ωm) ≷ 0 for ωm ≷ 0. It can be also seen that

(
b(σ)

m,n − 1
)
Re k(σ,−)

m,n > 0. If the
Cherenkov condition is not satisfied, β‖ = v‖

√
ε′

0/c < 1, from the formulae given above it
follows that

Re k(σ,+)
m,n > 0, ωm

(
Re k(σ,±)

m,n

)
> 0, ±Im k(σ,±)

m,n > 0. (21)

In this case the poles k(σ,+)
m,n

(
k(σ,−)
m,n

)
are situated in the upper (lower) half of the complex plane

kz. In the limit ε′′
0 → 0, deforming the integration contour we obtain the rule for avoiding the

poles plotted in figure 1. In the case β‖ > 1, the corresponding inequalities have the form

Re k(σ,+)
m,n < 0, ∓ωm

(
Re k(σ,±)

m,n

)
< 0, Im k(σ,±)

m,n < 0. (22)

In the way similar to that for the previous case, deforming the contour for the integration over
kz, we obtain the avoidance rule for the poles given in figure 2.
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Figure 2. Integration contour in the kz plane for the case β‖ > 1.

3. Radiation intensity in the waveguide

3.1. Radiation fields

In this section, we consider the radiation field propagating inside a cylindrical waveguide
with perfectly conducting walls for large distances from the charge. First of all let us show
that the part corresponding to the first term on the right-hand side of formula (3) does not
contribute to the radiation field. This directly follows from the estimate of the integral over
kz on the basis of the stationary phase method. As in the integral over kz the phase kzz has
no stationary points, for large values |z| the integral vanishes faster than any degree of 1/|z|,
under the condition that the pre-exponential function belongs to the class C∞(R). It follows
from here that the radiation field is determined by the singularity points of the pre-exponential
function. As has been mentioned before, for the integral over kz the only singular points are
the poles of the function D

(p)
m at the points kz = k(σ,±)

m,n , determined by relations (16). To
find the corresponding contribution, we note that the integration contour over kz has the form
depicted in figure 1 for β‖ < 1 and the form depicted in figure 2 for the case β‖ > 1. At
large distances from the charge the integration contour can be closed by a large semicircle in
the upper (lower) half-plane for z > v‖t (z < v‖t). This choice is caused by the fact that the
integrand exponentially vanishes in the upper (lower) half-plane. As a result when the radius
of the large semicircle goes to infinity the corresponding integral vanishes. Hence, for large
values |z| the integral over kz, by residue theorem, is equal to the sum of residues inside the
contour multiplied by 2π i sgn(z − v‖t). For ε′′

0 → 0 and large n, when b(σ)2
m,n >

(
1 − β2

‖
)−1

,
the poles k(σ,±)

m,n have a finite imaginary part and the corresponding contribution exponentially
vanishes in the limit z → ∞. As a result these poles do not contribute to the radiation field.

As before we consider two cases. When β‖ < 1, we close the integration contour in
figure 1 by the semicircle of large radius in the upper half-plane for z > v‖t and in the lower
half-plane for z < v‖t . As a result for the radiation field one finds

Fl(r, t) = αRe


 ∑

σ=0,1

∞∑
m=0

′ n
(σ)
max∑

n=1

F
(σ,α)
ml (r, t)


 , (23)

where α = +(α = −) corresponds to the case z > v‖t (z < v‖t), and we use the notation

F
(σ,α)
ml (r, t) = 4π i Res

kz=k
(σ,α)
m,n

Fml(kz, ρ) ei(mϕ+kzz−ωmt). (24)

Each term in the sum on the right-hand side of formula (23) describes waves with the
frequency ω(σ,±)

m,n propagating along the positive direction of the z axis for α = + and for
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α = −, 1 < b(σ)
m,n < 1

/√
1 − β2

‖ , and waves propagating along the negative direction of the

z axis for α = −, b(σ)
m,n < 1. If the Cerenkov condition is satisfied, β‖ > 1, then closing

the integration contour in figure 2 by a large semicircle in the upper or lower half-plane in
dependence of the sign for z − v‖t , for the vector potential of the radiation field one finds

Fl(r, t) = −θ(v‖t − z)Re


∑

α=±

∑
σ=0,1

∞∑
m=0

′ n
(σ)
max∑

n=1

F
(σ,α)
ml (r, t)


 , (25)

where θ(x) is the Heaviside unit step function. Separate terms in the sum in formula (25)
describe waves with the frequency

∣∣ω(σ,±)
m,n

∣∣ propagating along the positive direction of the z

axis for α = + and for α = −, b(σ)
m,n > 1 , and along the negative direction of the z axis for

α = −, b(σ)
m,n < 1. Note that for b(σ)

m,n > 1 we have no waves propagating along the negative
direction of the z axis. Taking into account the formulae for the Fourier components of the
fields and evaluating the residues by the standard formulae of the complex analysis, we find
the following expressions for the radiation parts of the z-components of the fields:

E(0,α)
mz (r, t) = 4qJm

(
j (0)
m,nρ0

/
ρ1

)
ε0ρ

2
1J 2

m+1

(
j

(0)
m,n

) Jm

(
j (0)
m,nρ

/
ρ1

)
exp

[
i
(
mϕ + k(0,α)

m,n z − ω(0,α)
m,n t

)]
, (26)

H(1,α)
mz (r, t) = −α

4iqv⊥j (1)3
m,n J ′

m

(
j (1)
m,nρ0

/
ρ1

)
√

ε0ρ
3
1

(
j

(1)
m,n − m2

)
J 2

m(j
(1)
m,n)

Jm

(
j (1)
m,nρ

/
ρ1

)

× exp
[
i(mϕ + k(1,α)

m,n z − ω(1,α)
m,n t)

]
mω0

√
1 + b

(σ)2
m,n

(
β2

‖ − 1
) , (27)

and H(0,α)
mz (r, t) = E(1,α)

mz (r, t) = 0. The transverse components are found from the formulae

E(0,α)
mt (r, t) = ik(0,α)

m,n

j
(0)2
m,n

ρ2
1∇tψ

(0), H(0,α)
mt (r, t) = ε0ω

(0,α)
m,n

ck
(0,α)
m,n

e3 × E(0,α)
mt (r, t), (28)

H(1,α)
mt (r, t) = ik(1,α)

m,n

j
(1)2
m,n

ρ2
1∇tψ

(1), E(1,α)
mt (r, t) = − ω(1,α)

m,n

ck
(1,α)
m,n

e3 × H(1,α)
mt (r, t), (29)

where ψ(0) = E(0,α)
mz (r, t) and ψ(1) = H(1,α)

mz (r, t),∇t = (∂/∂ρ, im/ρ, 0) and e3 is the unit
vector along the axis of the waveguide.

3.2. Radiation intensity

As we have seen, inside the waveguide the radiation is presented in the form of waves with
a discrete set of the values for the projection of the wave vector on the waveguide axis,
kz = k(σ,α)

m,n , n = 1, 2, . . . , determined by formula (16). Having the radiation fields we
consider the mean energy lost per unit time

I = − 1

T

∫ T

0
dt

∫
(jϕEϕ + jzEz)ρdρdϕ dz, T = 2π/ω0. (30)

The radiation intensity I is presented as the sum of intensities on separate modes

I =
∞∑

m=0

′ ∑
σ=0,1

I (σ)
m , I (σ)

m =
∑
α=±

n
(σ)
max∑

n=1

I (σ,α)
m,n . (31)
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The term with m = 0 is present only when the condition β‖ > 1 is satisfied and the
corresponding parts have the form

I
(0)
0 = 2q2v‖

ρ2
1

n
(0)
max∑

n=1

J 2
0

(
j

(0)
0,nρ0

/
ρ1

)
ε0J

2
1

(
j

(0)
0,n

) , I
(1)
0 = 2q2v2

⊥v‖
c2ρ2

1

n
(1)
max∑

n=1

J 2
1

(
j

(1)
0,nρ0

/
ρ1

)
(
β2

‖ − 1
)
J 2

0

(
j

(1)
0,n

) . (32)

Each term in the sums of these formulae corresponds to the radiation with the frequency given
by the formula v‖j

(σ)
0,n

/(
ρ1

√
β2

‖ − 1
)
. For the radiation intensities on harmonics m �= 0, one

has the formulae

I (0,α)
m,n = 2q2c

ε
3/2
0 ρ2

1

J 2
m

(
j (0)
m,nρ0

/
ρ1

)
b

(0)2
m,nJ 2

m+1

(
j

(0)
m,n

)
∣∣ω(0,α)

m,n

∣∣
mω0

√
1 + b

(0)2
m,n

(
β2

‖ − 1
)
, (33)

I (1,α)
m,n = 2q2v2

⊥
c
√

ε0ρ
2
1

j (1)2
m,n J ′2

m

(
j (1)
m,nρ0

/
ρ1

)
(
j

(1)2
m,n − m2

)
J 2

m

(
j

(1)
m,n

)
∣∣ω(1,α)

m,n

∣∣
mω0

√
1 + b

(1)2
m,n

(
β2

‖ − 1
) . (34)

For β‖ < 1, the upper limit of the summation over n is defined by relation (17). Otherwise this
limit is determined by the dispersion law for the dielectric permittivity ε0 through the condition
v‖

√
ε0 > c. It can be seen that for the case ε0 = 1 the expression for

∑
α I (σ,α)

m,n obtained from
formulae (33) and (34) coincides with the corresponding formulae in [25]. Taking β‖ = 0,
from formulae (33) and (34) we obtain the corresponding results for the radiation from a
particle circulating in the plane perpendicular to the waveguide axis [28].

In accordance with (15), for given m and n the necessary condition for the presence of the
radiation is the condition

mω0ρ1
√

ε0/c � j (σ)
m,n

√
1 − β2

‖ . (35)

Now by taking into account the relation j (σ)
m,n � m for the zeros of the Bessel functions, we

conclude that under the conditions β‖ < 1 and β⊥ <

√
1 − β2

‖ρ0
/
ρ1, with β⊥ = v⊥

√
ε0/c,

there is no radiation inside the waveguide though the particle moves with acceleration. If
β‖ < 1 and the condition

j (σ)
m,n

√
1 − β2

‖ = mβ⊥ρ1/ρ0 (36)

takes place, then the intensity for the TE waves defined by formulae (34) goes to infinity.
However, under these conditions the absorption in the medium (and also in the walls of the
waveguide) becomes important and the imaginary part of the dielectric permittivity should be
taken into account. Formulae (33) and (34) are valid under the condition

ε′′
0

ε′
0

	 ε′
0


(

mω0ρ1

j
(σ)
m,nc

)2

+
v2

‖
c2


 − 1, (37)

where ε0 = ε′
0 + iε′′

0 .
Instead of kz we can introduce the angular variable ϑ , the values ϑ(σ,α)

m,n for which are
related to the quantities k(σ,α)

m,n by the formula

k(σ,α)
m,n = mω0

c

√
ε0 cos ϑ(σ,α)

m,n

1 − β‖ cos ϑ
(σ,α)
m,n

. (38)

The quantities ωm(kz) and λ0 are expressed via ϑ(σ,α)
m,n by the formulae

ωm(kz) = mω0

1 − β‖ cos ϑ
(σ,α)
m,n

, (39)
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λ0 = ωm(kz)

c

√
ε0 sin ϑ(σ,α)

m,n . (40)

The possible values ϑ(σ,α)
m,n are determined by formulae (16) and (38):

cos ϑ(σ,±)
m,n =

β‖b(σ)2
m,n ±

√
1 + b

(σ)2
m,n

(
β2

‖ − 1
)

1 + β2
‖b

(σ)2
m,n

. (41)

Note that the singularity in the radiation intensity (34) noted above corresponds to the values
of the angular variable determined by the condition

ϑ(σ,α)
m,n = ϑ⊥, ϑ⊥ ≡ arccos β‖. (42)

In the reference frame moving along the direction of the z axis with the velocity v‖ the angle
corresponding to ϑ⊥ is equal to π/2. From (41) the following relations can be seen:

0 � ϑ(σ,+)
m,n � ϑ0 � ϑ(σ,−)

m,n � π, (43)

where

ϑ0 =
{
ϑ⊥ for β‖ < 1,

ϑc for β‖ > 1,
(44)

and ϑc = arccos(1/β‖) is the Cherenkov angle related to the drift velocity v‖. Hence, for
β‖ < 1 the waves with α = + (α = −) are those which in the reference frame moving with
velocity v‖ along the waveguide axis, propagate along the positive (negative) direction of the
z axis. For β‖ > 1 the waves with α = + (α = −) propagate inside (outside) the Cherenkov
cone ϑ = ϑc. From formulae (33) and (34) it follows that the number of radiated quanta does
not depend on α. In particular, for β‖ < 1, the same number of quanta is radiated inside and
outside the cone ϑ = ϑ⊥. For the case ε0 = 1, we could expect this result from the problem
symmetry, as in the reference frame moving along the direction of the z axis with the velocity
v‖ we have a symmetric situation under the reflection with respect to the charge rotation plane.

Now let us consider the radiation intensity in the limiting case of large values of the
waveguide radius, ρ1 → ∞. In this limit, the main contribution into the radiation intensity
comes from large values n and we can use the asymptotic formula (see, for instance, [27])

j (σ)
m,n ≈ π

(
n +

m − 1

2
+

(−1)σ

4

)
. (45)

Replacing the summation over n by the integration and introducing as a new integration
variable the angle ϑ , for the radiation intensity one finds

I (σ)
m ≈

∫
dϑ

dI
(σ)
0m

dϑ
, (46)

where

dI
(0)
0m

dϑ
= q2ω2

0m
2

c
√

ε0 sin ϑ

(cos ϑ − β‖)2

|1 − β‖ cos ϑ |3 J 2
m

(
mβ⊥ sin ϑ

1 − β‖ cos ϑ

)
, (47)

dI
(1)
0m

dϑ
= q2ω2

0m
2

c
√

ε0

β2
⊥ sin ϑ

|1 − β‖ cos ϑ |3 J ′2
m

(
mβ⊥ sin ϑ

1 − β‖ cos ϑ

)
. (48)

In this limit, the frequency for the radiation along given direction ϑ is determined by the
expression mω0/|1 − β‖ cos ϑ |. Expressions (47) and (48) coincide with the corresponding
formulae for the radiation in a homogeneous medium with dielectric permittivity ε0. Note
that in the discussed limit we have the transition ϑ(σ,±)

m,n → ϑ and the upper (lower) sign
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Figure 3. The number of quanta emitted on the harmonic m = 24 in the form of the TE and
TM waves per circulating period of the charge, multiplied by h̄c/q2, (h̄c/q2)N

(σ)
m , versus the ratio

ρ1/ρ0 for β‖ = 0.9 (left panel) and β‖ = 0.7 (right panel). The velocity of the transverse motion
corresponds to the energy 2 MeV and the dielectric permittivity is taken ε0 = 3.

corresponds to the angular region 0 � ϑ � ϑ0 (ϑ0 � ϑ � π), where ϑ0 is defined by
formula (44).

As an additional check for formulae (33) and (34) we can consider the special case ω0 = 0
for a fixed value ρ0. This corresponds to a charge moving with constant velocity v‖ on a straight
line ρ = ρ0 parallel to the waveguide axis. In this limit b(σ)

m,n → ∞, and from condition (15)
it follows that the radiation is present only under the Cherenkov condition β‖ > 1. Taking the
limit ω0 → 0, from formulae (33) and (34), we see that

I (0,α)
m,n

∣∣
ω0=0 = 2q2v‖

ε0ρ
2
1

J 2
m

(
j (0)
m,nρ0

/
ρ1

)
J 2

m+1

(
j

(0)
m,n

) , I (1,α)
m,n → 0. (49)

Hence, in the limit under consideration the TM waves are radiated only. The corresponding
frequency is given by the expression v‖j (0)

m,n

/(
ρ1

√
β2

‖ − 1
)
. In the limit ρ1 → ∞, by using

asymptotic formula (45) for the zeros of the Bessel function, replacing the summation over n
by the integration, and using the formula

∑′∞
m=0 J 2

m(x) = 1/2, we can see that from (49) the
formula for the Cherenkov radiation intensity in a homogeneous medium is obtained. Formula
(49) for the radiation of a charge moving parallel to the axis of the waveguide can be found,
for example, in [29].

We have carried out numerical calculations for the number of the radiated quanta per one
period of the particle orbiting

N(σ)
m =

∑
α=±

n
(σ)
max∑

n=1

N(σ,α)
m,n = 2π

h̄ω0

∑
α=±

n
(σ)
max∑

n=1

I (σ,α)
m,n∣∣ω(σ,α)
m,n

∣∣ . (50)

As has been mentioned before, the quantity N(σ,α)
m,n does not depend on α. In figure 3, we

have plotted the dependence of N(σ)
m on the ratio ρ1/ρ0 for m = 24 and v⊥/c ≈ 0.967

corresponding to the energy 2 MeV assuming that ε0 = 3. The graphs are given for β‖ = 0.9
(left panel) and β‖ = 0.7 (right panel). Note that the location of the peaks in the number of
radiated quanta for TE waves is determined by formula (36). In particular, for large values n
by using the asymptotic formula (45) we see that the distance between the neighboring peaks
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Figure 4. The left panel presents the number of radiated quanta, (h̄c/q2)N
(σ,α)
m,n , as a function of

n for the harmonic m = 24 and for ρ1/ρ0 = 1.02, β‖ = 0.9. The values of the other parameters
are the same as those for figure 3. The black points correspond to the TE waves, and the circles
correspond to the TM waves. On the right panel the ratio ω

(σ,α)
m,n /mω0 is plotted in dependence

of n. The upper (lower) halves of the points correspond to α = + (α = − ). The values of the
parameters are the same as for the left panel.

is given by formula π

√
1 − β2

‖/(mβ⊥) and decreases with increasing β‖. As we see the main

part of the radiated quanta is emitted in the form of the TE waves. Similar features take place
for the radiation on other values of the harmonic m. For the same values of the parameters, for
the number N

(σ)
0m of the radiated quanta in the homogeneous medium evaluated from formulae

(47) and (48), one finds

N
(0)
0m ≈ 2.683

q2

h̄c
, N

(1)
0m ≈ 9.514

q2

h̄c
, for β‖ = 0.9, (51)

N
(0)
0m ≈ 2.082

q2

h̄c
, N

(1)
0m ≈ 4.676

q2

h̄c
, for β‖ = 0.7. (52)

Of course, in this case the result does not depend on ρ1.
In addition to the total number of radiated quanta for a given m, it is of interest to consider

the corresponding spectral distribution. On the left panel of figure 4, we have plotted the
quantity N(σ,α)

m,n as a function of n for ρ1/ρ0 = 1.02, β‖ = 0.9, for the same values of the
parameters corresponding to figure 3. In this case we have n(σ)

max = 19. On the right panel of
figure 4, we have given the corresponding frequencies for TM and TE waves.

Now we consider an important case of relativistic charge motion in the direction of the
waveguide axis when the velocity of orthogonal motion is non-relativistic, v⊥ 	 c. This type
of motion is realized in helical undulators. The corresponding magnetic field in Cartesian
coordinates is given by Hu = Hu(− sin(kuz), cos(kuz), 0), where ku = 2π/λu and λu is the
undulator period length. The corresponding parameters for the particle orbit are related to the
particle energy E and to the undulator characteristics by the formulae

v⊥
c

= Ku

γ
,

v‖
c

=
√

1 − 1 + K2
u

γ 2
, ω0 = kuv‖, ρ0 = Kuc

γ kuv‖
, (53)

where γ = E/m0c
2, with m0 being the particle mass. In formulae (53), Ku = (q/m0c

2)Hu/ku

is the so-called undulator parameter. For example, for the helical undulator of the Stanford
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Figure 5. The number of the radiated quanta of the TE modes with m = 1, (h̄c/q2)N
(1)
1 , as a

function of the undulator parameter Ku for the undulator period λu = 3 cm and for the radius of
the waveguide ρ1 = 0.5 cm. The full curve corresponds to the radiation from an electron with the
energy E = 25 MeV moving in the waveguide filled by air and the dashed curve is for the radiation
from an electron of energy 100 MeV moving in the empty waveguide.

free electron laser Hu = 0.23 T, λu = 3.3 cm and the electron energy E = 43.5 MeV. For
these values of the parameters we have Ku ≈ 0.71. As is seen from (33) and (34), in the
presence of the medium the factor 1 − v2

‖
/
c2 in the formulae for the radiation intensity in

the empty waveguide is replaced by the factor 1 − β2
‖ . This replacement leads to important

influences on the radiation properties. These influences are essentially different in the cases
ε0 < 1 and ε0 > 1. In the first case, even at very high energies the factor 1 − β2

‖ tends to
finite limiting value and the radiation does not have the features typical for the radiation of
an ultrarelativistic particle in vacuum. In contrast to this, when ε0 > 1, under the condition
0 < 1 −β2

‖ 	 1 the properties of the radiation are similar to those for the radiation in vacuum
from an ultrarelativistic particle even in the case when v‖ is not too close to c. In order to
illustrate these features, in figure 5 we have presented the number of the radiated quanta of the
TE modes with m = 1 as a function of the undulator parameter Ku for the undulator period
λu = 3 cm and for the radius of the waveguide ρ1 = 0.5 cm. The full curve corresponds to
the radiation from an electron with the energy E = 25 MeV moving in the waveguide filled
by air (ε0 = 1.000 54) and the dashed curve is for the radiation from an electron of energy
100 MeV moving in the empty waveguide (ε0 = 1). Note that in the first case we have
1 −β‖ ≈ 4.1 × 10−5 and in the second case 1 −β‖ ≈ 1.9 × 10−5. The corresponding spectral
distributions are presented in figure 6 for the value of the undulator parameter Ku = 0.7. On
the left panel, we have plotted the quantity N

(1,α)
1,n as a function of n and on the right panel the

corresponding frequencies are presented. The black points correspond to the radiation from
an electron with the energy E = 25 MeV moving in the waveguide filled by air, and the circles
correspond to the radiation from an electron of energy 100 MeV in the empty waveguide.

For ultrarelativistic particles the main part of the radiated energy is in the spectral range
ω > ωp, with ωp being the plasma frequency, where the dielectric permittivity is well
approximated by the formula ε0 ≈ 1 − ω2

p

/
ω2. In this regime, the radiation frequencies are

of the order ω0γ
2, and for the undulator parameter λu ∼ 1 cm we have γ � 103. In this

range the perfect conductor boundary condition on the waveguide walls is no longer valid
and for frequencies larger than the corresponding plasma frequency the waveguide becomes
transparent. The corresponding radiation intensity propagating in the exterior region is strongly
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Figure 6. The left panel presents the number of the radiated quanta, (h̄c/q2)N
(1,α)
1,n , as a function

of n for Ku = 0.7. The values of the other parameters are the same as those for figure 5. On
the right panel the corresponding frequencies, 10−13ω

(1,α)
1,n /2π , are plotted versus n. The black

points correspond to the radiation from an electron with the energy E = 25 MeV moving in the
waveguide filled by air, and the circles correspond to the radiation from an electron of energy
100 MeV in the empty waveguide.

directed in the forward direction and is described by the formulae given in [22]. As regards the
frequency range ω 	 ωp, the corresponding radiation intensities are described by formulae
(33) and (34), where for materials with ε0 − 1 � γ −2 we can substitute 1 − β2

‖ ≈ 1 − ε0.
By taking into account formula (53) for the radius of the helical orbit, from formulae (33)
and (34) we can see that for j (σ)

m,n 	 γ the number of the radiated quanta N(σ,α)
m,n is suppressed

by the factor γ −2 for both TM and TE waves, whereas the corresponding frequencies are
practically independent of the particle energy. For the modes with j (σ)

m,n � γ , we have∣∣ω(σ,α)
m,n

∣∣ ≈ cj (σ)
m,n

/√
1 − 1/ε0ρ1 and N(σ,α)

m,n ∼ γ −2σ . In this case, the radiation on the TM
modes dominates.

In the discussion above we have considered the radiation emitted by a single particle
moving along a prescribed trajectory. From the point of view of practical applications, the
generalization of the obtained results for the case of the radiation from an electron beam is
a next important step. In helical undulators, the beam is bunched and the features of the
radiation critically depend on the ratio of the bunch length to the wavelength of the emitted
radiation. If the wavelength is smaller than the bunch length, the particles in the bunch are not
phase correlated and the total power radiated by the bunch is the sum of single particle parts.
In the opposite limit, called the coherent spontaneous radiation regime, the wavelength of the
radiation exceeds the length of the bunch and the particles radiate coherently. In this case,
the radiated power is enhanced by the factor of number of particles in the bunch relative to the
incoherent radiation at the same wavelength. Here it is important to take into account that long
wavelength radiation is suppressed by the waveguide cutoff condition and this leads to the
constraints for the bunch length in order to have coherent radiation in the waveguide. Once the
fields are evaluated, another interesting question is related to the influence of the radiation field
on the motion of the radiating particles. The interaction of the beam with its own radiation can
induce an additional microbunching with the possibility of coherent radiation from particles
of the same microbunch. These questions require a separate consideration, and we plan to
address them in the future work. A recent discussion of the beam dynamics in undulators can
be found in [30] (see also [31]).
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Another point which deserves a separate investigation is the role of the other processes of
the particle interaction with the medium (see also the discussion in [24]). In particular, they
include ionization energy losses, particle bremsstrahlung in media, and the multiple scattering
(see, for instance, [32, 33]). The relative role of these processes depends on the particle energy
and characteristics of the medium. To our best knowledge, the previous investigations in this
direction were mainly concerned with the case of an unbounded homogeneous medium and
the investigation of the effects induced by the presence of the waveguide requires a separate
consideration. However, some general features can be obtained by using the corresponding
results for a homogeneous medium. First of all, as the above-mentioned processes are absent
in the vacuum, the radiation discussed in the present paper is the main mechanism of the energy
losses in a sufficiently rarefied medium. Next, while the ionization losses by an electron rise
logarithmically with energy and bremsstrahlung losses arise nearly linearly, the undulator
radiation intensity arises quadratically and, hence, dominates at sufficiently high energies. For
a particle moving in air, the ionization losses dominate those due to the bremsstrahlung for the
energies less than 100 MeV. By using the standard formula, it can be seen that in the example
corresponding to figures 5 and 6 the relative energy loss is ≈1% per metre. An interesting
possibility of escaping ionization losses in the medium was indicated in [29] (see also [34]).
In this paper, it was argued that a narrow empty channel along the particle trajectory in the
solid dielectric does not affect the radiation intensity if the channel radius is less than the
radiation wavelength. From the other side, the maximum impact parameter for ionization
losses is of the order bmax ∼ min[(h̄/m0c)E/I, c/ωp], where I is the mean excitation energy
for the atom of the medium, and for the channel radius larger than bmax ionization losses are
suppressed. As in other processes involving multiple scattering, we expect that this effect will
appear in the formula for the radiation intensity at given frequency in the form of the additional
multiplicative factor, and there exists a critical energy of the particle below which the multiple
scattering does not affect the radiation. We can try to estimate this factor by using the Migdal
formula. For the values of the parameters taken in the example above this factor leads to the
decrease of the radiation intensity by ≈0.5%.

4. Conclusion

We have investigated the electromagnetic field generated by a charge moving along a helical
orbit inside a circular waveguide with dielectric filling. This type of motion is involved in
magnetic devices called helical undulators which are inserted into a straight sector of storage
rings. The helical undulators are used to generate circularly polarized intense electromagnetic
radiation in a relatively narrow bandwidth. The frequency of radiation is tunable by varying
the beam energy and the magnetic field. In this paper, we have seen that the insertion
of a waveguide into the helical undulator provides an additional mechanism for tuning the
characteristics of the emitted radiation by choosing the parameters of the waveguide and
filling the medium. The electric and magnetic fields are presented as the sum of two parts.
The first one corresponds to the fields of the charge in the homogeneous medium, and the
second one is induced by the presence of the waveguide. The Fourier components of the latter
are given by formulae (8), (9), (11) and (12). In order to extract from the total fields the
parts corresponding to the radiation, we have investigated analytic properties of the Fourier
components as functions on kz. These components have poles on the eigenmodes of the
waveguide. We have specified the ways by which these poles should be circled in the integral
over kz. For the cases β‖ < 1 and β‖ > 1, the corresponding contours are plotted in figures 1
and 2. By using the residue theorem, the radiation fields are presented as a superposition of
the eigenmodes of the waveguide corresponding to the TM and TE waves. The projection of
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the wave vector on the waveguide axis and the corresponding frequency are given by formulae
(16) and (18). We have derived formulae (33) and (34) for the radiation intensity emitted in
the form of the TM and TE waves. Limiting cases are considered and features of the radiation
are investigated. In particular, we have seen that the main part of the radiated quanta is emitted
in the form of the TE waves. Applications of general formulae to helical undulators are given.
In particular, we have demonstrated that in the case of filled waveguide the radiation with
features characteristic for ultrarelativistic particles in the empty waveguide is obtained for
moderately relativistic particles. The radiation emitted on the waveguide modes propagates
inside the cylinder and the waveguide serves as a natural collector for the radiation. This
eliminates the necessity for focusing to achieve a high-power spectral intensity. The geometry
considered here is of interest also from the point of view of generation and transmitting of
waves in waveguides, a subject which is of considerable practical importance in microwave
engineering and optical fiber communications.
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